Publicaciones

Esta sección incluye una lista de los últimos artículos científicos del IPNA publicados en revistas incluidas en el Science Citation Index (SCI).

En DIGITAL.CSIC, repositorio institucional del CSIC, pueden encontrar el listado completo de artículos científicos desde 1962, así como otras colecciones de interés como congresos, tesis, libros, material divulgativo, etc. del centro. El objetivo de DIGITAL.CSIC es organizar, preservar y difundir en acceso abierto los resultados de nuestra investigación.

En el repositorio institucional del CSIC, pueden encontrar el listado completo de artículos científicos, así como otras colecciones de interés como congresos, tesis, libros, material divulgativo, etc.

Ir a Digital - CSIC

 

Análisis de la Producción Científica del IPNA 2014-2019: análisis bibliométrico realizado a partir de datos recogidos en Scopus y Web of Science.

Image
Digital CSIC
Image
Could climate change benefit invasive snakes? Modelling the potential distribution of the California Kingsnake in the Canary Islands

Could climate change benefit invasive snakes? Modelling the potential distribution of the California Kingsnake in the Canary Islands

The interaction between climate change and biological invasions is a global conservation challenge with major consequences for invasive species management. However, our understanding of this interaction has substantial knowledge gaps; this is particularly relevant for invasive snakes on islands because they can be a serious threat to island ecosystems. Here we evaluated the potential influence of climate change on the distribution of invasive snakes on islands, using the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria. We analysed the potential distribution of L. californiae under current and future climatic conditions in the Canary Islands, with the underlying hypothesis that the archipelago might be suitable for the species under these climate scenarios. Our results indicate that the Canary Islands are currently highly suitable for the invasive snake, with increased suitability under the climate change scenarios tested here. This study supports the idea that invasive reptiles represent a substantial threat to near-tropical regions, and builds on previous studies suggesting that the menace of invasive reptiles may persist or even be exacerbated by climate change. We suggest future research should continue to fill the knowledge gap regarding invasive reptiles, in particular snakes, to clarify their potential future impacts on global biodiversity.

Piquet, Julien C. ; Warren, Dan L.; Saavedra Bolaños, Jorge Fernando; Sánchez Rivero, José Miguel; Gallo-Barneto, Ramón; Cabrera-Pérez, Miguel Ángel; Fisher, Robert N.; Fisher, Sam R.; Rochester, Carlton J.; Hinds, Brian; Nogales, Manuel ; López-Darias, Marta

Journal of Environmental Management 294, 112917 (2021)
Image
K-Ar geochronology and trace-element geochemistry of 2M1 illite from upper Paleozoic shale of SW Laurentia – Insights into sediment origin and drainage pathways in the Anadarko Basin, USA

K-Ar geochronology and trace-element geochemistry of 2M1 illite from upper Paleozoic shale of SW Laurentia – Insights into sediment origin and drainage pathways in the Anadarko Basin, USA

The Anadarko Basin of Oklahoma represents a major Paleozoic depocenter that existed along the rifted margins of southwestern Laurentia. In its infancy it accumulated a thick series of Cambrian through Mississippian detritus while further subsidence caused by inversion of the Cambrian Southern Oklahoma Aulacogen resulted in voluminous Pennsylvanian to Permian sediment. This contribution reports new data on K-Ar ages and trace-element geochemistry of detrital illite from middle and upper Pennsylvanian shale used to reconstruct sediment origins at the peak period of subsidence of the Anadarko Basin. X-ray diffraction was used to unveil mineral compositions and abundances of illite polytypes in two size fractions of separated illite (˂1 and 2-1 μm). K-Ar isotopic analyses were completed for both fine fractions, while the laser ablation inductively coupled plasma mass spectrometry was done for the latter. All illite separates consisted of mixtures of authigenic (1Md) and detrital (2M1) illite. The Illite Age Analyses showed that the detrital age of Desmoinesian (Moscovian) shale is the late Ediacaran (584 Ma), while the age of Missourian (Kasimovian) shale is the middle Cambrian (512.5 Ma). Trace-element abundances of all analyzed illite, irrespectively of stratigraphic age, are consistent with those of mica from metamorphic rocks. Based on illite detrital age and geochemistry it was inferred that Desmoinesian (Moscovian) shale represents a mixture of Neoproterozoic and Cambrian detritus sourced locally, whereas Missourian (Kasimovian) shale records a provenance shift toward more distal easterly sources from the Ouachita-(Marathon) foreland. This study has proposed a sediment source transition between the middle and upper Pennsylvanian that likely reflected major changes in the basin paleogeography and progressive development of the east-west (transcontinental) fluvial systems.

Šegvić, Branimir; Zanoni, Giovanni; Bozkaya, Ömer; Sweet, Dustin; Barnes, Melanie; Boulesteix, Thomas ; Solé, Jesús

Palaeogeography, Palaeoclimatology, Palaeoecology 575, 110486 (2021)
Image
Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes

Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes

A new method that allows the complete control of the regioselectivity of the hydrobromination reaction of alkenes is described. Herein, we report a radical procedure with TMSBr and oxygen as common reagents, where the formation of the anti-Markovnikov product occurs in the presence of parts per million amounts of the Cu(I) species and the formation of the Markovnikov product occurs in the presence of 30 mol % iron(II) bromide. Density functional theory calculations combined with Fukui’s radical susceptibilities support the obtained results.

Cruz, Daniel A.; Sinka, Victoria; de Armas, Pedro; Steingruber, Hugo Sebastián; Fernández, Israel; Martín, Víctor S.; Miranda, Pedro O.; Padrón, Juan I.

Organic Letters (2021)
Image
Cyanovinylation of Aldehydes: Organocatalytic Multicomponent Synthesis of Conjugated Cyanomethyl Vinyl Ethers

Cyanovinylation of Aldehydes: Organocatalytic Multicomponent Synthesis of Conjugated Cyanomethyl Vinyl Ethers

A novel organocatalytic multicomponent cyanovinylation of aldehydes was designed for the synthesis of conjugated cyanomethyl vinyl ethers. The reaction was implemented for the synthesis of a 3-substituted 3-(cyanomethoxy)acrylates, using aldehydes as substrates, acetone cyanohydrin as the cyanide anion source, and methyl propiolate as the source of the vinyl component. The multicomponent reaction is catalyzed by N-methyl morpholine (2.5 mol%) to deliver the 3-(cyanomethoxy)acrylates in excellent yields and with preponderance of the E-isomer. The multicomponent reaction manifold is highly tolerant to the structure and composition of the aldehyde (aliphatic, aromatic, heteroaromatics), and it is instrumentally simple (one batch, open atmospheres), economic (2.5 mol% catalyst, stoichiometric reagents), environmentally friendly (no toxic waste), and sustainable (easy scalability).

Delgado-Hernández, Samuel; García-Tellado, Fernando; Tejedor, David

Molecules 26(14), 4120: 1-12 (2021)
Image
Dispersal limitations and long-term persistence drive differentiation from haplotypes to communities within a tropical sky-island: evidence from community metabarcoding

Dispersal limitations and long-term persistence drive differentiation from haplotypes to communities within a tropical sky-island: evidence from community metabarcoding

Neutral theory proposes that dispersal stochasticity is one of the main drivers of local diversity. Haplotypes-level genetic variation can now be efficiently sampled from across whole communities, thus making it possible to test neutral predictions from the genetic to species-level diversity, and higher. However, empirical data is still limited, with the few studies to date coming from temperate latitudes. Here, we focus on a tropical mountain within the Transmexican Volcanic Belt to evaluate spatially fine-scale patterns of arthropod community assembly to understand the role of dispersal limitation and landscape features as drivers of diversity. We sampled whole-communities of arthropods for eight orders at a spatial scale ranging from 50 m to 19 km, using whole community metabarcoding. We explored multiple hierarchical levels, from individual haplotypes to lineages at 0.5, 1.5, 3, 5, 7.5% similarity thresholds, to evaluate patterns of richness, turnover, and distance decay of similarity with isolation-by-distance and isolation-by resistance (costs to dispersal given by landscape features) approaches. Our results showed that distance and altitude influence distance decay of similarity at all hierarchical levels. This holds for arthropod groups of contrasting dispersal abilities, but with different strength depending on the spatial scale. Our results support a model where local-scale differentiation mediated by dispersal constraints, combined with long-term persistence of lineages, is an important driver of diversity within tropical sky islands.

Gálvez-Reyes, Nancy; Arribas, Paula; Andújar, Carmelo; Emerson, Brent C.; Piñero, Daniel; Mastretta-Yanes, Alicia

Molecular Ecology (2021)
Image
Metapopulation structure modulates sexual antagonism

Metapopulation structure modulates sexual antagonism

Despite the far-reaching evolutionary implications of sexual conflict, the effects of metapopulation structure, when populations are subdivided into several demes connected to some degree by migration, on sexual conflict dynamics are unknown. Here, we used experimental evolution in an insect model system, the seed beetle Callosobruchus maculatus, to assess the independent and interacting effects of selection histories associated with mating system (monogamy vs. polygamy) and population subdivision on sexual conflict evolution. We confirm traditional predictions from sexual conflict theory by revealing increased resistance to male harm in females from populations with a history of intense sexual selection (polygamous populations) compared to females from populations with a history of relaxed sexual selection (monogamous populations). However, selection arising from metapopulation structure reversed the classic pattern of sexually antagonistic coevolution and led to reduced resistance in females from polygamous populations. These results underscore that population spatial structure moderates sexual selection and sexual conflict, and more broadly, that the evolution of sexual conflict is contingent on ecological context. The findings also have implications for population dynamics, conservation biology, and biological control.

Rodríguez-Expósito, Eduardo; García-González, Francisco

Evolution Letters: 1-15 (2021)

Changes in the structure of seed dispersal networks when including interaction outcomes from both plant and animal perspectives

Interaction frequency is the most common currency in quantitative ecological networks, although interaction quality can also affect benefits provided by mutualisms. Here, we evaluate if interaction quality can modify network topology, species' role and whether such changes affect community vulnerability to species loss. We use a well-examined study system (bird–lizard and fleshy-fruited plants in the ‘thermophilous' woodland of the Canary Islands) to compare network and species-level metrics from a network based on fruit consumption rates (interaction frequency, IF), against networks reflecting functional outcomes: a seed dispersal effectiveness network (SDE) quantifying recruitment, and a fruit resource provisioning network (FRP), accounting for the nutrient supply of fruits. Nestedness decreased in the FRP and the SDE networks, due to the lack of association between fruit consumption rates and 1) nutrient content and; 2) recruitment at the seed deposition sites, respectively. The FRP network showed lower niche overlap due to resource use complementarity among frugivores. Interaction evenness was lower in the SDE network, in response to a higher dominance of lizards in the recruitment of heliophilous species. Such changes, however, did not result in enhanced vulnerability against extinctions. At the plant species level, strength changed in the FRP network in frequently consumed or highly nutritious species. The number of effective partners decreased for species whose seeds were deposited in unsuitable places for recruitment. In frugivores, strength was consistent across networks (SDE vs IF), showing that consumption rates outweighed differences in dispersal quality. In the case of lizards, the increased importance of nutrient-rich species resulted in a higher number of effective partners.

Our work shows that although frequency strongly impacts interaction effects, accounting for quality improves our inferences about interaction assembly and species role. Thus, future studies including interaction outcomes from both partners' perspectives will provide valuable insights about the net effects of mutualistic interactions.

González-Castro, Aaron; Morán-López, Teresa; Nogales, Manuel; Traveset, Anna

Oikos (2021)
DOIDigital.CSIC

Acrylonitrile Derivatives against Trypanosoma cruzi: In Vitro Activity and Programmed Cell Death Study

The neglected infection known as Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, results in more than 7000 deaths per year, with an increasing number of cases in non-endemic areas such as Europe or the United States. Moreover, with the current available therapy, only two compounds which are active against the acute phase of the disease are readily available. In addition, these therapeutic agents display multiple undesired side effects such as high toxicity, they are expensive, the treatment is lengthy and the resistant strain has emerged. Therefore, there is a need to find new compounds against Chagas disease which should be active against the parasite but also cause low toxicity to the patients. In the present work, the activity of novel acrylonitriles against Trypanosoma cruzi was evaluated as well as the analysis of the physiological events induced in the treated parasites related to the cell death process. Hence, the characteristic features of an apoptosis-like process such as chromatin condensation and mitochondrial membrane potential, among others, were studied. From the 32 compounds tested against the epimastigote stage of T. cruzi, 11 were selected based on their selectivity index to determine if these compounds were able to induce programmed cell death (PCD) in the treated parasites. Furthermore, acrylonitriles Q5, Q7, Q19, Q27 and Q29 were shown to trigger physiological events related in the PCD. Therefore, this study highlights the therapeutic potential of acrylonitriles as novel trypanocidal agents.

Bethencourt-Estrella, Carlos J.; Delgado-Hernández, Samuel; López-Arencibia, Atteneri; San Nicolás-Hernández, Desirée; Sifaoui, Ines; Tejedor, David; García-Tellado, Fernando; Lorenzo-Morales, Jacob; Piñero, José E.

Pharmaceuticals 14(6), 552: 1-19 (2021)
DOIDigital.CSIC

Dynamic Nucleophilic Aromatic Substitution of Tetrazines

A dynamic nucleophilic aromatic substitution of tetrazines (SNTz) is presented herein. It combines all the advantages of dynamic covalent chemistry with the versatility of the tetrazine moiety. Indeed, libraries of compounds or sophisticated molecular structures can be easily obtained, which are susceptible to post-functionalization by inverse electron demand Diels–Alder (IEDDA) reaction, which also locks the exchange. Additionally, the structures obtained can be disassembled upon the application of the right stimulus, either UV irradiation or a suitable chemical reagent. Moreover, SNTz is compatible with the imine chemistry of anilines. The high potential of this methodology has been proved by building two responsive supramolecular systems: A macrocycle that displays a light-induced release of acetylcholine; and a truncated [4+6] tetrahedral shape-persistent fluorescent cage, which is disassembled by thiols unless it is post-stabilized by IEDDA.

Santos, Tanausú; Rivero, David S.; Pérez-Pérez, Yaiza; Martín-Encinas, Endika; Pasán, Jorge; Hernández Daranas, Antonio; Carillo, Romen

Angewandte Chemie - International Edition 60: 2-11 (2021)
DOIDigital.CSIC

The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies

Living species are continuously subjected to all extrinsic forms of reactive oxidants and others that are produced endogenously. There is extensive literature on the generation and effects of reactive oxygen species (ROS) in biological processes, both in terms of alteration and their role in cellular signaling and regulatory pathways. Cells produce ROS as a controlled physiological process, but increasing ROS becomes pathological and leads to oxidative stress and disease. The induction of oxidative stress is an imbalance between the production of radical species and the antioxidant defense systems, which can cause damage to cellular biomolecules, including lipids, proteins and DNA. Cellular and biochemical experiments have been complemented in various ways to explain the biological chemistry of ROS oxidants. However, it is often unclear how this translates into chemical reactions involving redox changes. This review addresses this question and includes a robust mechanistic explanation of the chemical reactions of ROS and oxidative stress.

Andrés Juan, Celia; Pérez de Lastra, José Manuel; Plou Gasca, Francisco José; Pérez-Lebeña, Euardo

International Journal of Molecular Sciences 22(9), 4642: 1-21(2021)
DOIDigital.CSIC

Biodiversity monitoring using environmental DNA

Monitoring biodiversity is essential to protect, preserve and restore ecosystems, particularly in the context of current challenges such as climate change, habitat destruction and globalization (Baird & Hajibabaei, 2012). Biomonitoring is needed for developing biotic indices for assessing ecological status, measuring impacts of anthropogenic activities in natural ecosystems, evaluating biodiversity loss, surveying nonindigenous species, conservation, and identifying cryptic species (Balvanera et al., 2006; Fišer et al., 2018). Thus, spatially and temporally structured biomonitoring activities provide a powerful tool for the implementation of regional, national and international regulations, directives and policies for nature conservation. However substantial impediments exist including access to remote locations, limited specialist taxonomic knowledge, cost, slow pace of human-driven data analyses, and typically low sensitivity for detection of rare and elusive species (Zinger et al., 2020). These drawbacks are often translated into expensive monitoring activities with limited spatial, temporal and taxonomic coverage. In this context, new approaches for biomonitoring are being explored, among which advanced DNA-based technologies are emerging (Kissling et al., 2018). The field of biodiversity monitoring through the analysis of the pool of DNA isolated from environmental samples, referred to as environmental DNA or eDNA (Pawlowski et al., 2020; Taberlet et al., 2012), is rapidly growing. This growth is being driven through improved approaches for sampling, data generation and analyses, and with recent advances on how eDNA should be interpreted for biodiversity assessments (Bohmann et al., 2014). The success of eDNA-based biomonitoring is reflected in exponential growth of publications within this area and increasing submissions to Molecular Ecology Resources in particular (Figure 1). Molecular Ecology Resources aims to publish high quality eDNA studies that serve as broad resources, including innovative methodologies for DNA sampling, enhanced laboratory protocols for data generation, or new computer programs and statistical advances for data analyses. Thus, the aim of this editorial is to contribute to producing good quality DNA data-derived essential biodiversity variables (EBVs) (Kissling et al., 2018) by providing guidance to the community submitting articles on the subject. For that purpose, we have summarized best practices established in published literature related to the different phases involved in the process, namely sampling, laboratory work, bioinformatic analyses and data interpretation (Figure 2).

Rodríguez-Ezpeleta, Naiara; Zinger, Lucie; Kinziger, Andrew; Bik, Holly M.; Bonin, Aurélie; Coissac, Eric; Emerson, Brent C. ; Martins Lopes, Carla; Pelletier, Tara A.; Taberlet, Pierre; Narum, Shawn

Molecular Ecology Resources 21(5): 1405-1409 (2021)
DOIDigital.CSIC

FLTX2: A Novel Tamoxifen Derivative Endowed with Antiestrogenic, Fluorescent, and Photosensitizer Properties

Tamoxifen is the most widely used selective modulator of estrogen receptors (SERM) and the first strategy as coadjuvant therapy for the treatment of estrogen-receptor (ER) positive breast cancer worldwide. In spite of such success, tamoxifen is not devoid of undesirable effects, the most life-threatening reported so far affecting uterine tissues. Indeed, tamoxifen treatment is discouraged in women under risk of uterine cancers. Recent molecular design efforts have endeavoured the development of tamoxifen derivatives with antiestrogen properties but lacking agonistic uterine tropism. One of this is FLTX2, formed by the covalent binding of tamoxifen as ER binding core, 7-nitrobenzofurazan (NBD) as the florescent dye, and Rose Bengal (RB) as source for reactive oxygen species. Our analyses demonstrate (1) FLTX2 is endowed with similar antiestrogen potency as tamoxifen and its predecessor FLTX1, (2) shows a strong absorption in the blue spectral range, associated to the NBD moiety, which efficiently transfers the excitation energy to RB through intramolecular FRET mechanism, (3) generates superoxide anions in a concentration- and irradiation time-dependent process, and (4) Induces concentration- and time-dependent MCF7 apoptotic cell death. These properties make FLTX2 a very promising candidate to lead a novel generation of SERMs with the endogenous capacity to promote breast tumour cell death in situ by photosensitization.

Díaz, Mario; Lobo, Fernando; Hernández, Dácil; Amesty, Ángel; Valdés-Baizabal, Catalina; Canerina-Amaro, Ana; Mesa-Herrera, Fátima; Soler, Kevin; Boto, Alicia; Marín, Raquel; Estévez-Braun, Ana; Lahoz, Fernando

International Journal of Molecular Sciences 22(10), 5339: 1-21 (2021)
DOIDigital.CSIC

Diet of the black rat (Rattus rattus) in a Canary laurel forest: species identification based on morphological markers and DNA sequences

The black rat (Rattus rattus) is an alien species that causes severe 10 impact on island ecosystems, floras and faunas. The main aim of this study was to determine the plant and animal contributions to black rat diet in a pristine misty laurel forest area on La Palma (Canary Islands). Our working hypothesis was that this rat equally consumes plants and animals (fully omnivorous animal) wherever it is intro- 15 duced, including pristine habitats. A total of 483 droppings collected from the terrain were first morphologically examined using a stereomicroscope, which showed high plant consumption (presence in 92.4% of droppings), followed by invertebrates (46.0%) and vertebrates (31.2%). DNA-based analyses revealed even higher pro- 20 portions of plants (97%) and invertebrates (79%), while fine-scale sequence searches (DNA barcoding) in the GenBank (BLAST tool) provided a preliminary identification of 44 plants and 12 invertebrate taxa. To gain more in-depth insight into plant identification, we built up a local DNA reference collection (58 species), improving accuracy 25 (30 species confirmed) compared to GenBank searches (25 species). Contingency analyses (chisquare and G-test) only showed significant differences in droppings between plant sequences and toxic plant presence. This study confirms that the black rat is here an omnivorous animal but with a strong plant diet component, including an intrigu- 30 ingly high number of toxic plants. Interestingly, despite rodents chewing on fruits and usually crushing seeds, 66 intact Rubus seeds (Rosaceae) were found in 15 droppings (3.1%). All these results suggest that black rats consume any plant types, including fruits and seeds that can be locally dispersed such as native brambles.

Pomeda-Gutiérrez, Fernando; Medina, Félix M.; Nogales, Manuel; Vargas, Pablo

Journal of Natural History 55(9-10): 629-648 (2021)
DOIDigital.CSIC

Sea dispersal potential and colonization of the Galápagos littoral flora

Aim Seed dispersal by oceanic currents (thalassochory) is considered one of the main long-distance dispersal (LDD) mechanisms for the colonization of oceanic islands by plants. Diaspores of littoral species are often hypothesized to be physiologically adapted to seawater dispersal, favouring interisland colonization. In this study, we experimentally tested the sea dispersal potential of a large proportion of Galápagos littoral flora and explored its correlation with plant distribution across the archipelago. We propose a simple Sea Dispersal Potential index (SDPi) to quantify the thalassochorous potential of any species. Location Galápagos archipelago. Taxon Littoral angiosperms. Methods We combined information on seed floatability (flotation time) and viability experiments (tetrazolium test) into an SDPi for 19 native littoral plants and tested whether increasing dispersal potential is associated with broader interisland distributions. We then tested if the presence of morphological structures related to thalassochory is associated with the functional SDPi. Results A relatively low, albeit highly variable, SDPi across Galápagos littoral plant species was found. No correlation was found between SDPi and species distributions. Morphological traits hypothesized to favour sea dispersal are not related to thalassorous potentials to reach closest islands, but they are positively associated with SDPi to reach the farthest islands. Main conclusions SDPi is shown to be a useful tool to compare the thalassochorous potentials of entire floras in a given geographical context. The low performance of most of the species questions the general assumption that most littoral plants are highly adapted to long-distance sea dispersal. Our results support the view that island colonization is a multifactorial process and that the use of dispersal syndromes is insufficient to make biogeographical predictions in macroecology studies. Further research should integrate functional indices (e.g., SDPi) with complementary tools (genetics, remote diaspore tracking) to determine the actual drivers of species dispersal and establishment.e

Fuster-Calvo, Alexandre; Nogales, Manuel; Heleno, Rubén; Vera, Carlos; Vargas, Pablo

Journal of Biogeography: 1-26 (2021)
DOIDigital.CSIC

Validation of a Method Scope Extension for the Analysis of POPs in Soil and Verification in Organic and Conventional Farms of the Canary Islands

Persistent organic pollutants (POPs) are among the most relevant and dangerous contaminants in soil, from where they can be transferred to crops. Additionally, livestock animals may inadvertently consume relatively high amounts of soil attached to the roots of the vegetables while grazing, leading to indirect exposure to humans. Therefore, periodic monitoring of soils is crucial; thus, simple, robust, and powerful methods are needed. In this study, we have tested and validated an easy QuEChERS-based method for the extraction of 49 POPs (8 PBDEs, 12 OCPs, 11 PAHs, and 18 PCBs) in soils and their analysis by GC-MS/MS. The method was validated in terms of linearity, precision, and accuracy, and a matrix effect study was performed. The limits of detection (LOD) were established between 0.048 and 3.125 ng g−1 and the limits of quantification (LOQ) were between 0.5 and 20 ng g−1, except for naphthalene (50 ng g−1). Then, to verify the applicability of the validated method, we applied it to a series of 81 soil samples from farms dedicated to mixed vegetable cultivation and vineyards in the Canary Islands, both from two modes of production (organic vs. conventional) where residues of OCPs, PCBs, and PAHs were found.

Acosta-Dacal, Andrea; Rial-Berriel, Cristina; Díaz-Díaz, Ricardo; Bernal-Suárez, María del Mar; Zumbado, Manuel; Henríquez-Hernández, Luis Alberto; Alonso-González, Pablo ; Parga-Dans, Eva ; Luzardo, Octavio P.

Toxics 9(5), 101: 1-17 (2021)
DOIDigital.CSIC

Short and Modular Synthesis of Substituted 2-Aminopyrroles

We herein describe a simple and metal-free domino methodology to synthesize 2-aminopyrroles from alkynyl vinyl hydrazides. The domino reaction involves a novel propargylic 3,4-diaza-Cope rearrangement and a tandem isomerization/5-exo-dig N-cyclization reaction. By using this approach, a number of 2-aminopyrroles with diverse substituents have been prepared.

Diana-Rivero, Raquel; Halsvik, Beate; García-Tellado, Fernando; Tejedor, David

Organic Letters 23(10): 4078–4082 (2021)
DOIDigital.CSIC