Publications

This section includes a list of the latest IPNA scientific articles published in journals included in the Science Citation Index (SCI).

In DIGITAL.CSIC, institutional repository of the CSIC, you can find the complete list of scientific articles since 1962, as well as other collections of interest such as congresses, theses, books, informative material, etc. of the centre. The aim of DIGITAL.CSIC is to organize, preserve and disseminate in open access the results of our research.

In the institutional repository of the CSIC, you can find the complete list of scientific articles, as well as other collections of interest such as congresses, theses, books, informative material, etc.

Go to Digital - CSIC

 

Analysis of the IPNA 2014-2019 Scientific Production: bibliometric analysis from data collected in Scopus and Web of Science.

 

Image
Digital CSIC
Image
Could climate change benefit invasive snakes? Modelling the potential distribution of the California Kingsnake in the Canary Islands

Could climate change benefit invasive snakes? Modelling the potential distribution of the California Kingsnake in the Canary Islands

The interaction between climate change and biological invasions is a global conservation challenge with major consequences for invasive species management. However, our understanding of this interaction has substantial knowledge gaps; this is particularly relevant for invasive snakes on islands because they can be a serious threat to island ecosystems. Here we evaluated the potential influence of climate change on the distribution of invasive snakes on islands, using the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria. We analysed the potential distribution of L. californiae under current and future climatic conditions in the Canary Islands, with the underlying hypothesis that the archipelago might be suitable for the species under these climate scenarios. Our results indicate that the Canary Islands are currently highly suitable for the invasive snake, with increased suitability under the climate change scenarios tested here. This study supports the idea that invasive reptiles represent a substantial threat to near-tropical regions, and builds on previous studies suggesting that the menace of invasive reptiles may persist or even be exacerbated by climate change. We suggest future research should continue to fill the knowledge gap regarding invasive reptiles, in particular snakes, to clarify their potential future impacts on global biodiversity.

Piquet, Julien C. ; Warren, Dan L.; Saavedra Bolaños, Jorge Fernando; Sánchez Rivero, José Miguel; Gallo-Barneto, Ramón; Cabrera-Pérez, Miguel Ángel; Fisher, Robert N.; Fisher, Sam R.; Rochester, Carlton J.; Hinds, Brian; Nogales, Manuel ; López-Darias, Marta

Journal of Environmental Management 294, 112917 (2021)
Image
K-Ar geochronology and trace-element geochemistry of 2M1 illite from upper Paleozoic shale of SW Laurentia – Insights into sediment origin and drainage pathways in the Anadarko Basin, USA

K-Ar geochronology and trace-element geochemistry of 2M1 illite from upper Paleozoic shale of SW Laurentia – Insights into sediment origin and drainage pathways in the Anadarko Basin, USA

The Anadarko Basin of Oklahoma represents a major Paleozoic depocenter that existed along the rifted margins of southwestern Laurentia. In its infancy it accumulated a thick series of Cambrian through Mississippian detritus while further subsidence caused by inversion of the Cambrian Southern Oklahoma Aulacogen resulted in voluminous Pennsylvanian to Permian sediment. This contribution reports new data on K-Ar ages and trace-element geochemistry of detrital illite from middle and upper Pennsylvanian shale used to reconstruct sediment origins at the peak period of subsidence of the Anadarko Basin. X-ray diffraction was used to unveil mineral compositions and abundances of illite polytypes in two size fractions of separated illite (˂1 and 2-1 μm). K-Ar isotopic analyses were completed for both fine fractions, while the laser ablation inductively coupled plasma mass spectrometry was done for the latter. All illite separates consisted of mixtures of authigenic (1Md) and detrital (2M1) illite. The Illite Age Analyses showed that the detrital age of Desmoinesian (Moscovian) shale is the late Ediacaran (584 Ma), while the age of Missourian (Kasimovian) shale is the middle Cambrian (512.5 Ma). Trace-element abundances of all analyzed illite, irrespectively of stratigraphic age, are consistent with those of mica from metamorphic rocks. Based on illite detrital age and geochemistry it was inferred that Desmoinesian (Moscovian) shale represents a mixture of Neoproterozoic and Cambrian detritus sourced locally, whereas Missourian (Kasimovian) shale records a provenance shift toward more distal easterly sources from the Ouachita-(Marathon) foreland. This study has proposed a sediment source transition between the middle and upper Pennsylvanian that likely reflected major changes in the basin paleogeography and progressive development of the east-west (transcontinental) fluvial systems.

Šegvić, Branimir; Zanoni, Giovanni; Bozkaya, Ömer; Sweet, Dustin; Barnes, Melanie; Boulesteix, Thomas ; Solé, Jesús

Palaeogeography, Palaeoclimatology, Palaeoecology 575, 110486 (2021)
Image
Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes

Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes

A new method that allows the complete control of the regioselectivity of the hydrobromination reaction of alkenes is described. Herein, we report a radical procedure with TMSBr and oxygen as common reagents, where the formation of the anti-Markovnikov product occurs in the presence of parts per million amounts of the Cu(I) species and the formation of the Markovnikov product occurs in the presence of 30 mol % iron(II) bromide. Density functional theory calculations combined with Fukui’s radical susceptibilities support the obtained results.

Cruz, Daniel A.; Sinka, Victoria; de Armas, Pedro; Steingruber, Hugo Sebastián; Fernández, Israel; Martín, Víctor S.; Miranda, Pedro O.; Padrón, Juan I.

Organic Letters (2021)
Image
Cyanovinylation of Aldehydes: Organocatalytic Multicomponent Synthesis of Conjugated Cyanomethyl Vinyl Ethers

Cyanovinylation of Aldehydes: Organocatalytic Multicomponent Synthesis of Conjugated Cyanomethyl Vinyl Ethers

A novel organocatalytic multicomponent cyanovinylation of aldehydes was designed for the synthesis of conjugated cyanomethyl vinyl ethers. The reaction was implemented for the synthesis of a 3-substituted 3-(cyanomethoxy)acrylates, using aldehydes as substrates, acetone cyanohydrin as the cyanide anion source, and methyl propiolate as the source of the vinyl component. The multicomponent reaction is catalyzed by N-methyl morpholine (2.5 mol%) to deliver the 3-(cyanomethoxy)acrylates in excellent yields and with preponderance of the E-isomer. The multicomponent reaction manifold is highly tolerant to the structure and composition of the aldehyde (aliphatic, aromatic, heteroaromatics), and it is instrumentally simple (one batch, open atmospheres), economic (2.5 mol% catalyst, stoichiometric reagents), environmentally friendly (no toxic waste), and sustainable (easy scalability).

Delgado-Hernández, Samuel; García-Tellado, Fernando; Tejedor, David

Molecules 26(14), 4120: 1-12 (2021)
Image
Dispersal limitations and long-term persistence drive differentiation from haplotypes to communities within a tropical sky-island: evidence from community metabarcoding

Dispersal limitations and long-term persistence drive differentiation from haplotypes to communities within a tropical sky-island: evidence from community metabarcoding

Neutral theory proposes that dispersal stochasticity is one of the main drivers of local diversity. Haplotypes-level genetic variation can now be efficiently sampled from across whole communities, thus making it possible to test neutral predictions from the genetic to species-level diversity, and higher. However, empirical data is still limited, with the few studies to date coming from temperate latitudes. Here, we focus on a tropical mountain within the Transmexican Volcanic Belt to evaluate spatially fine-scale patterns of arthropod community assembly to understand the role of dispersal limitation and landscape features as drivers of diversity. We sampled whole-communities of arthropods for eight orders at a spatial scale ranging from 50 m to 19 km, using whole community metabarcoding. We explored multiple hierarchical levels, from individual haplotypes to lineages at 0.5, 1.5, 3, 5, 7.5% similarity thresholds, to evaluate patterns of richness, turnover, and distance decay of similarity with isolation-by-distance and isolation-by resistance (costs to dispersal given by landscape features) approaches. Our results showed that distance and altitude influence distance decay of similarity at all hierarchical levels. This holds for arthropod groups of contrasting dispersal abilities, but with different strength depending on the spatial scale. Our results support a model where local-scale differentiation mediated by dispersal constraints, combined with long-term persistence of lineages, is an important driver of diversity within tropical sky islands.

Gálvez-Reyes, Nancy; Arribas, Paula; Andújar, Carmelo; Emerson, Brent C.; Piñero, Daniel; Mastretta-Yanes, Alicia

Molecular Ecology (2021)
Image
Metapopulation structure modulates sexual antagonism

Metapopulation structure modulates sexual antagonism

Despite the far-reaching evolutionary implications of sexual conflict, the effects of metapopulation structure, when populations are subdivided into several demes connected to some degree by migration, on sexual conflict dynamics are unknown. Here, we used experimental evolution in an insect model system, the seed beetle Callosobruchus maculatus, to assess the independent and interacting effects of selection histories associated with mating system (monogamy vs. polygamy) and population subdivision on sexual conflict evolution. We confirm traditional predictions from sexual conflict theory by revealing increased resistance to male harm in females from populations with a history of intense sexual selection (polygamous populations) compared to females from populations with a history of relaxed sexual selection (monogamous populations). However, selection arising from metapopulation structure reversed the classic pattern of sexually antagonistic coevolution and led to reduced resistance in females from polygamous populations. These results underscore that population spatial structure moderates sexual selection and sexual conflict, and more broadly, that the evolution of sexual conflict is contingent on ecological context. The findings also have implications for population dynamics, conservation biology, and biological control.

Rodríguez-Expósito, Eduardo; García-González, Francisco

Evolution Letters: 1-15 (2021)

Long‐term cloud forest response to climate warming revealed by insect speciation history

Montane cloud forests are areas of high endemism, and are one of the more vulnerable terrestrial ecosystems to climate change. Thus, understanding how they both contribute to the generation of biodiversity, and will respond to ongoing climate change, are important and related challenges. The widely accepted model for montane cloud forest dynamics involves upslope forcing of their range limits with global climate warming. However, limited climate data provides some support for an alternative model, where range limits are forced downslope with climate warming. Testing between these two models is challenging, due to the inherent limitations of climate and pollen records. We overcome this with an alternative source of historical information, testing between competing model predictions using genomic data and demographic analyses for a species of beetle tightly associated to an oceanic island cloud forest. Results unequivocally support the alternative model: populations that were isolated at higher elevation peaks during the Last Glacial Maximum are now in contact and hybridizing at lower elevations. Our results suggest that genomic data are a rich source of information to further understand how montane cloud forest biodiversity originates, and how it is likely to be impacted by ongoing climate change.

Salces-Castellano, Antonia; Stankowski, Sean; Arribas, Paula; Patiño, Jairo; Karger, Dirk N.; Butlin, Roger; Emerson, Brent C.

Evolution 75(2): 231-244 (2021)
DOIDigital.CSIC

Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle

Molybdenum (Mo) is a key cofactor in enzymes used for nitrogen (N) fixation and nitrate reduction, and the low availability of Mo can constrain N inputs, affecting ecosystem productivity. Natural atmospheric Mo aerosolization and deposition from sources such as desert dust, sea‐salt spray, and volcanoes can affect ecosystem function across long timescales, but anthropogenic activities such as combustion, motor vehicles, and agricultural dust have accelerated the natural Mo cycle. Here we combined a synthesis of global atmospheric concentration observations and modeling to identify and estimate anthropogenic sources of atmospheric Mo. To project the impact of atmospheric Mo on terrestrial ecosystems, we synthesized soil Mo data and estimated the global distribution of soil Mo using two approaches to calculate turnover times. We estimated global emissions of atmospheric Mo in aerosols (<10 μm in diameter) to be 23 Gg Mo yr‐1, with 40 to 75% from anthropogenic sources. We approximated that for the top meter of soil, Mo turnover times range between 1,000 to 1,000,000 years. In some industrialized regions, anthropogenic inputs have enhanced Mo deposition 100‐fold, lowering the soil Mo turnover time considerably. Our synthesis of global observational data, modeling, and a mass balance comparison with riverine Mo exports suggest that anthropogenic activity has greatly accelerated the Mo cycle, with potential to influence N‐limited ecosystems.

Wong, Michelle Y.; Rathod, Sagar D.; Marino, Roxanne; Li, Longlei; Howarth, Robert W.; Alastuey, Andres; Alaimo, Maria Grazia; Barraza, Francisco; Carneiro, Manuel Castro; Chellam, Shankararaman; Chen Yu-Cheng; Cohen, David D.; Connelly, David; Dongarra, Gaetano; Gomez, Dario; Hand, Jenny; Harrison, R.M.; Hopke, Philip K.; Hueglin, Christoph; Kuang, Yuan-wen; Lambert, Fabrice; Liang, James; Losno, Remi; Maenhaut, Willy; Milando, Chad; Couto Monteiro, Maria Inês; Morera-Gómez, Yasser; Querol, Xavier; Rodríguez, Sergio; Smichowski, Patricia; Varrica, Daniela; Xiao, Yi-hua; Xu, Yangjunjie; Mahowald, Natalie M.

Global Biogeochemical Cycles 35(2), e2020GB006787: 1-70 (2021)
DOIDigital.CSIC

Validated removal of nuclear pseudogenes and sequencing artefacts from mitochondrial metabarcode data

Metabarcoding of Metazoa using mitochondrial genes may be confounded by both the accumulation of PCR and sequencing artefacts and the co-amplification of nuclear mitochondrial pseudogenes (NUMTs). The application of read abundance thresholds and denoising methods is efficient in reducing noise accompanying authentic mitochondrial amplicon sequence variants (ASVs). However, these procedures do not fully account for the complex nature of concomitant sequences and the highly variable DNA contribution of specimens in a metabarcoding sample. We propose, as a complement to denoising, the metabarcoding Multidimensional Abundance Threshold Evaluation (metaMATE) framework, a novel approach that allows comprehensive examination of multiple dimensions of abundance filtering and the evaluation of the prevalence of unwanted concomitant sequences in denoised metabarcoding datasets. metaMATE requires a denoised set of ASVs as input, and designates a subset of ASVs as being either authentic (mitochondrial DNA haplotypes) or nonauthentic ASVs (NUMTs and erroneous sequences) by comparison to external reference data and by analysing nucleotide substitution patterns. metaMATE (i) facilitates the application of read abundance filtering strategies, which are structured with regard to sequence library and phylogeny and applied for a range of increasing abundance threshold values, and (ii) evaluates their performance by quantifying the prevalence of nonauthentic ASVs and the collateral effects on the removal of authentic ASVs. The output from metaMATE facilitates decision-making about required filtering stringency and can be used to improve the reliability of intraspecific genetic information derived from metabarcode data. The framework is implemented in the metaMATE software (available at https://github.com/tjcreedy/metamate).

Andújar, Carmelo; Creedy, Thomas J.; Arribas, Paula; López, Heriberto; Salces-Castellano, Antonia; Pérez‐Delgado, Antonio José; Vogler, Alfried P.; Emerson, Brent C.

Molecular Ecology Resources (2021)
DOIDigital.CSIC

Exploring the role of life history traits and introduction effort in understanding invasion success in mammals: a case study of Barbary ground squirrels

Invasive species–species that have successfully overcome the barriers of transport, introduction, establishment, and spread—are a risk to biodiversity and ecosystem function. Introduction effort is one of the main factors underlying invasion success, but life history traits are also important as they influence population growth. In this contribution, we first investigated life history traits of the Barbary ground squirrel, Atlantoxerus getulus, a species with a very low introduction effort. We then studied if their invasion success was due to a very fast life history profile by comparing their life history traits to those of other successful invasive mammals. Next, we examined whether the number of founders and/or a fast life history influences the invasion success of squirrels. Barbary ground squirrels were on the fast end of the “fast-slow continuum”, but their life history was not the only contributing factor to their invasion success, as the life history profile is comparable to other invasive species that do not have such a low introduction effort. We also found that neither life history traits nor the number of founders explained the invasion success of introduced squirrels in general. These results contradict the concept that introduction effort is the main factor explaining invasion success, especially in squirrels. Instead, we argue that invasion success can be influenced by multiple aspects of the new habitat or the biology of the introduced species.

van der Marel, Annemarie; Waterman, Jane M.; López-Darias, Marta

Oecologia 195: 327–339(2021)
DOIDigital.CSIC

Time-Scales of Inter-eruptive Volcano Uplift Signals: Three Sisters Volcanic center, Oregon (USA)

A classical inflation-eruption-deflation cycle of a volcano is useful to conceptualize the time-evolving deformation of volcanic systems. Such a model predicts accelerated uplift during pre-eruptive periods, followed by subsidence during the co-eruptive stage. Some volcanoes show puzzling persistent uplift signals with minor or no other geophysical or geochemical variations, which are difficult to interpret. Such temporal behaviors are usually observed in large calderas (e.g., Yellowstone, Long Valley, Campi Flegrei, Rabaul), but less commonly for stratovolcanoes. Volcano deformation needs to be better understood during inter-eruptive stages, to assess its value as a tool for forecasting eruptions and to understand the processes governing the unrest behavior. Here, we analyze inter-eruptive uplift signals at Three Sisters, a complex stratovolcano in Oregon (United States), which in recent decades shows persistent inter-eruptive uplift signals without associated eruptive activity. Using a Bayesian inversion method, we re-assessed the source characteristics (magmatic system geometry and location) and its uncertainties. Furthermore, we evaluate the most recent evolution of the surface deformation signals combining both GPS and InSAR data through a new non-subjective linear regularization inversion procedure to estimate the 26 years-long time-series. Our results constrain the onset of the Three Sisters volcano inflation to be between October 1998 and August 1999. In the absence of new magmatic inputs, we estimate a continuous uplift signal, at diminishing but detectable rates, to last for few decades. The observed uplift decay observed at Three Sisters is consistent with a viscoelastic response of the crust, with viscosity of ∼1018 Pa s around a magmatic source with a pressure change which increases in finite time to a constant value. Finally, we compare Three Sisters volcano time series with historical uplift at different volcanic systems. Proper modeling of scaled inflation time series indicates a unique and well-defined exponential decay in temporal behavior. Such evidence supports that this common temporal evolution of uplift rates could be a potential indicator of a rather reduced set of physical processes behind inter-eruptive uplift signals.

Rodríguez-Molina, Sara; González, Pablo J.; Charco, María; Negredo, Ana M.; Schmidt, David A.

Frontiers in Earth Science 8, 645: 1-30 (2021)
DOIDigital.CSIC

ENMTools 1.0: an R package for comparative ecological biogeography

The ENMTools software package was introduced in 2008 as a platform for making measurements on environmental niche models (ENMs, frequently referred to as species distribution models or SDMs), and for using those measurements in the context of newly developed Monte Carlo tests to evaluate hypotheses regarding niche evolution. Additional functionality was later added for model selection and simulation from ENMs, and the software package has been quite widely used. ENMTools was initially implemented as a Perl script, which was also compiled into an executable file for various platforms. However, the package had a number of significant limitations; it was only designed to fit models using Maxent, it relied on a specific Perl distribution to function, and its internal structure made it difficult to maintain and expand. Subsequently, the R programming language became the platform of choice for most ENM studies, making ENMTools less usable for many practitioners. Here we introduce a new R version of ENMTools that implements much of the functionality of its predecessor as well as numerous additions that simplify the construction, comparison and evaluation of niche models. These additions include new metrics for model fit, methods of measuring ENM overlap, and methods for testing evolutionary hypotheses. The new version of ENMTools is also designed to work within the expanding universe of R tools for ecological biogeography, and as such includes greatly simplified interfaces for analyses from several other R packages.

Warren, Dan L.; Matzke, Nicholas J.; Cardillo, Marcel; Baumgartner, John B.; Beaumont, Linda J.; Turelli, Michael; Glor, Richard E.; Huron, Nicholas A.; Simões, Marianna; Iglesias, Teresa L.; Piquet, Julien C.; Dinnage, Russell

Ecography 44: 1-8 (2021)
DOIDigital.CSIC

Are Computational Methods Useful for Structure Elucidation of Large and Flexible Molecules? Belizentrin as a Case Study

Quantum mechanical NMR methods are progressively becoming decisive in structure elucidation. However, problems arise using low-level calculations for complex molecules, whereas methods using higher levels of theory are not practical for large molecules. This report outlines a synergistic effort employing computationally inexpensive quantum mechanical NMR calculations with conformer selection incorporating 3JHH values as a way to solve the structure of large, complex, and highly flexible molecules using readily available computational resources with belizentrin as a case study.

Hernández Daranas, Antonio; Sarotti, Ariel M.

Organic Letters 23(2): 503–507 (2021)
DOIDigital.CSIC

The role of the brown bear Ursus arctos as a legitimate megafaunal seed disperser

Megafaunal frugivores can consume large amounts of fruits whose seeds may be dispersed over long distances, thus, affecting plant regeneration processes and ecosystem functioning. We investigated the role of brown bears (Ursus arctos) as legitimate megafaunal seed dispersers. We assessed the quantity component of seed dispersal by brown bears across its entire distribution based on information about both the relative frequency of occurrence and species composition of fleshy fruits in the diet of brown bears extracted from the literature. We assessed the quality component of seed dispersal based on germination experiments for 11 fleshy-fruited plant species common in temperate and boreal regions and frequently eaten by brown bears. Across its distribution, fleshy fruits, on average, represented 24% of the bear food items and 26% of the total volume consumed. Brown bears consumed seeds from at least 101 fleshy-fruited plant species belonging to 24 families and 42 genera, of which Rubus (Rosaceae) and Vaccinium (Ericaceae) were most commonly eaten. Brown bears inhabiting Mediterranean forests relied the most on fleshy fruits and consumed the largest number of species per study area. Seeds ingested by bears germinated at higher percentages than those from whole fruits, and at similar percentages than manually depulped seeds. We conclude that brown bears are legitimate seed dispersers as they consume large quantities of seeds that remain viable after gut passage. The decline of these megafaunal frugivores may compromise seed dispersal services and plant regeneration processes.

García-Rodríguez, Alberto; Albrecht; Jörg, Szczutkowska, Sylwia; Valido, Alfredo; Farwing, Nina; Selva, Nuria

Scientific Reports 11, 1282: 1-11 (2021)
DOIDigital.CSIC

“Doubly Customizable” Unit for the Generation of Structural Diversity: From Pure Enantiomeric Amines to Peptide Derivatives

Readily available, low-cost 4R-hydroxy-l-proline (Hyp) is introduced as a “doubly customizable” unit for the generation of libraries of structurally diverse compounds. Hyp can be cleaved at two points, followed by the introduction of new functionalities. In the first cycle, the removal and replacement of the carboxylic group are carried out, followed (second cycle) by the scission of the 4,5-position and manipulation of the resulting chains. In this way, three new chains are generated and can be transformed independently to afford a diversity of products with tailored substituents, such as β-amino aldehydes, diamines, β-amino acid derivatives, including N-alkylated ones, or modified peptides. Many of these products are high-profit compounds but, in spite of their commercial value, are still scarce. Moreover, the process takes place with stereochemical control, and either pure R or S isomers can be obtained with small variations of the synthetic route.

Hernández, Dácil; Carro, Carmen; Boto, Alicia

Journal of Organic Chemistry 86(3): 2796–2809 (2021)
DOIDigital.CSIC

Connecting high‐throughput biodiversity inventories: Opportunities for a site‐based genomic framework for global integration and synthesis

High‐throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site‐based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled “Next Generation Biodiversity Monitoring” was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3‐day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS‐based strategy to collectively build an integrative framework for site‐based biodiversity data generation.

Arribas, Paula; Andújar, Carmelo; Bidartondo, Martin I.; Bohmann, Kristine; Coissac, Éric; Creer, Simon; deWaard, Jeremy R.; Elbrecht, Vasco; Ficetola, Gentile F.; Goberna, Marta; Kennedy, Susan; Krehenwinkel, Henrik; Leese, Florian; Novotny, Vojtech; Ronquist, Fredrik; Yu, Douglas W.; Zinger, Lucie; Creedy, Thomas J.; Meramveliotakis, Emmanouil; Noguerales, Víctor; Overcast, Isaac; Morlon, Hélène; Vogler, Alfried P.; Papadopoulou, Anna; Emerson, Brent C.

Molecular Ecology (2021)
DOIDigital.CSIC